Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Diagnostics (Basel) ; 13(8)2023 Apr 12.
Article in English | MEDLINE | ID: covidwho-2294971

ABSTRACT

Chest X-rays (CXRs) are essential in the preliminary radiographic assessment of patients affected by COVID-19. Junior residents, as the first point-of-contact in the diagnostic process, are expected to interpret these CXRs accurately. We aimed to assess the effectiveness of a deep neural network in distinguishing COVID-19 from other types of pneumonia, and to determine its potential contribution to improving the diagnostic precision of less experienced residents. A total of 5051 CXRs were utilized to develop and assess an artificial intelligence (AI) model capable of performing three-class classification, namely non-pneumonia, non-COVID-19 pneumonia, and COVID-19 pneumonia. Additionally, an external dataset comprising 500 distinct CXRs was examined by three junior residents with differing levels of training. The CXRs were evaluated both with and without AI assistance. The AI model demonstrated impressive performance, with an Area under the ROC Curve (AUC) of 0.9518 on the internal test set and 0.8594 on the external test set, which improves the AUC score of the current state-of-the-art algorithms by 1.25% and 4.26%, respectively. When assisted by the AI model, the performance of the junior residents improved in a manner that was inversely proportional to their level of training. Among the three junior residents, two showed significant improvement with the assistance of AI. This research highlights the novel development of an AI model for three-class CXR classification and its potential to augment junior residents' diagnostic accuracy, with validation on external data to demonstrate real-world applicability. In practical use, the AI model effectively supported junior residents in interpreting CXRs, boosting their confidence in diagnosis. While the AI model improved junior residents' performance, a decline in performance was observed on the external test compared to the internal test set. This suggests a domain shift between the patient dataset and the external dataset, highlighting the need for future research on test-time training domain adaptation to address this issue.

2.
Med Image Anal ; 83: 102664, 2022 Oct 22.
Article in English | MEDLINE | ID: covidwho-2229942

ABSTRACT

Pneumonia can be difficult to diagnose since its symptoms are too variable, and the radiographic signs are often very similar to those seen in other illnesses such as a cold or influenza. Deep neural networks have shown promising performance in automated pneumonia diagnosis using chest X-ray radiography, allowing mass screening and early intervention to reduce the severe cases and death toll. However, they usually require many well-labelled chest X-ray images for training to achieve high diagnostic accuracy. To reduce the need for training data and annotation resources, we propose a novel method called Contrastive Domain Adaptation with Consistency Match (CDACM). It transfers the knowledge from different but relevant datasets to the unlabelled small-size target dataset and improves the semantic quality of the learnt representations. Specifically, we design a conditional domain adversarial network to exploit discriminative information conveyed in the predictions to mitigate the domain gap between the source and target datasets. Furthermore, due to the small scale of the target dataset, we construct a feature cloud for each target sample and leverage contrastive learning to extract more discriminative features. Lastly, we propose adaptive feature cloud expansion to push the decision boundary to a low-density area. Unlike most existing transfer learning methods that aim only to mitigate the domain gap, our method instead simultaneously considers the domain gap and the data deficiency problem of the target dataset. The conditional domain adaptation and the feature cloud generation of our method are learning jointly to extract discriminative features in an end-to-end manner. Besides, the adaptive feature cloud expansion improves the model's generalisation ability in the target domain. Extensive experiments on pneumonia and COVID-19 diagnosis tasks demonstrate that our method outperforms several state-of-the-art unsupervised domain adaptation approaches, which verifies the effectiveness of CDACM for automated pneumonia diagnosis using chest X-ray imaging.

3.
IEEE J Biomed Health Inform ; 26(3): 1080-1090, 2022 03.
Article in English | MEDLINE | ID: covidwho-1759116

ABSTRACT

Pneumonia is one of the most common treatable causes of death, and early diagnosis allows for early intervention. Automated diagnosis of pneumonia can therefore improve outcomes. However, it is challenging to develop high-performance deep learning models due to the lack of well-annotated data for training. This paper proposes a novel method, called Deep Supervised Domain Adaptation (DSDA), to automatically diagnose pneumonia from chest X-ray images. Specifically, we propose to transfer the knowledge from a publicly available large-scale source dataset (ChestX-ray14) to a well-annotated but small-scale target dataset (the TTSH dataset). DSDA aligns the distributions of the source domain and the target domain according to the underlying semantics of the training samples. It includes two task-specific sub-networks for the source domain and the target domain, respectively. These two sub-networks share the feature extraction layers and are trained in an end-to-end manner. Unlike most existing domain adaptation approaches that perform the same tasks in the source domain and the target domain, we attempt to transfer the knowledge from a multi-label classification task in the source domain to a binary classification task in the target domain. To evaluate the effectiveness of our method, we compare it with several existing peer methods. The experimental results show that our method can achieve promising performance for automated pneumonia diagnosis.


Subject(s)
Deep Learning , Pneumonia , Early Diagnosis , Humans , Pneumonia/diagnostic imaging , Tomography, X-Ray Computed/methods , X-Rays
SELECTION OF CITATIONS
SEARCH DETAIL